If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4p^2+6p-16=0
a = 4; b = 6; c = -16;
Δ = b2-4ac
Δ = 62-4·4·(-16)
Δ = 292
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{292}=\sqrt{4*73}=\sqrt{4}*\sqrt{73}=2\sqrt{73}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{73}}{2*4}=\frac{-6-2\sqrt{73}}{8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{73}}{2*4}=\frac{-6+2\sqrt{73}}{8} $
| x+x-24+68=180 | | 2x+8=6(x+4) | | 28=u/4+17 | | xx3=45 | | 28=u/4=17 | | -3(x+1)=3/2(1-2x) | | 62,8-12,25=x/4+7 | | -2(w-6)=5w-16 | | 3.1m-59.3=12 | | 10x+22+7x+5=180 | | -2.55+x=4.85 | | -8n-4=-2+n-68n | | 3x-1x=15 | | Y=2/5x+10 | | 5x^+10x+1=0 | | (-16x-24)=0 | | 9x+15=2+7x+29 | | 8(6+4x)=10 | | 10-4x=-7 | | 3(x+4)=110 | | 6(6+4x=10 | | 3y-29y=4)=8 | | 25.12=3.14x | | 26.69+b-1.1=-142.862 | | 6(6+4x)=10 | | 5x-23=x-1 | | 3(×-2)=2x-1 | | (-16x)-16x-8x+24=0 | | x+4.8=17 | | X=7/y-3/4 | | N=20-c | | 2-3(x-1)=2(1-2x)+1 |